nLab Goss zeta function

Contents

Contents

Idea

The Goss zeta function is an analog (under the function field analogy) of the Riemann zeta function for number fields.

Like the Weil zeta function.

Properties

Function field analogy

function field analogy

number fields (β€œfunction fields of curves over F1”)function fields of curves over finite fields 𝔽 q\mathbb{F}_q (arithmetic curves)Riemann surfaces/complex curves
affine and projective line
β„€\mathbb{Z} (integers)𝔽 q[z]\mathbb{F}_q[z] (polynomials, polynomial algebra on affine line 𝔸 𝔽 q 1\mathbb{A}^1_{\mathbb{F}_q})π’ͺ β„‚\mathcal{O}_{\mathbb{C}} (holomorphic functions on complex plane)
β„š\mathbb{Q} (rational numbers)𝔽 q(z)\mathbb{F}_q(z) (rational fractions/rational function on affine line 𝔸 𝔽 q 1\mathbb{A}^1_{\mathbb{F}_q})meromorphic functions on complex plane
pp (prime number/non-archimedean place)xβˆˆπ”½ px \in \mathbb{F}_p, where zβˆ’xβˆˆπ”½ q[z]z - x \in \mathbb{F}_q[z] is the irreducible monic polynomial of degree onexβˆˆβ„‚x \in \mathbb{C}, where zβˆ’x∈π’ͺ β„‚z - x \in \mathcal{O}_{\mathbb{C}} is the function which subtracts the complex number xx from the variable zz
∞\infty (place at infinity)∞\infty
Spec(β„€)Spec(\mathbb{Z}) (Spec(Z))𝔸 𝔽 q 1\mathbb{A}^1_{\mathbb{F}_q} (affine line)complex plane
Spec(β„€)βˆͺplace ∞Spec(\mathbb{Z}) \cup place_{\infty}β„™ 𝔽 q\mathbb{P}_{\mathbb{F}_q} (projective line)Riemann sphere
βˆ‚ p≔(βˆ’) pβˆ’(βˆ’)p\partial_p \coloneqq \frac{(-)^p - (-)}{p} (Fermat quotient)βˆ‚βˆ‚z\frac{\partial}{\partial z} (coordinate derivation)β€œ
genus of the rational numbers = 0genus of the Riemann sphere = 0
formal neighbourhoods
β„€/(p nβ„€)\mathbb{Z}/(p^n \mathbb{Z}) (prime power local ring)𝔽 q[z]/((zβˆ’x) n𝔽 q[z])\mathbb{F}_q [z]/((z-x)^n \mathbb{F}_q [z]) (nn-th order univariate local Artinian 𝔽 q \mathbb{F}_q -algebra)β„‚[z]/((zβˆ’x) nβ„‚[z])\mathbb{C}[z]/((z-x)^n \mathbb{C}[z]) (nn-th order univariate Weil β„‚ \mathbb{C} -algebra)
β„€ p\mathbb{Z}_p (p-adic integers)𝔽 q[[zβˆ’x]]\mathbb{F}_q[ [ z -x ] ] (power series around xx)β„‚[[zβˆ’x]]\mathbb{C}[ [z-x] ] (holomorphic functions on formal disk around xx)
Spf(β„€ p)Γ—Spec(β„€)XSpf(\mathbb{Z}_p)\underset{Spec(\mathbb{Z})}{\times} X (β€œpp-arithmetic jet space” of XX at pp)formal disks in XX
β„š p\mathbb{Q}_p (p-adic numbers)𝔽 q((zβˆ’x))\mathbb{F}_q((z-x)) (Laurent series around xx)β„‚((zβˆ’x))\mathbb{C}((z-x)) (holomorphic functions on punctured formal disk around xx)
𝔸 β„š=∏ β€²pplaceβ„š p\mathbb{A}_{\mathbb{Q}} = \underset{p\; place}{\prod^\prime}\mathbb{Q}_p (ring of adeles)𝔸 𝔽 q((t))\mathbb{A}_{\mathbb{F}_q((t))} ( adeles of function field )∏ β€²xβˆˆβ„‚β„‚((zβˆ’x))\underset{x \in \mathbb{C}}{\prod^\prime} \mathbb{C}((z-x)) (restricted product of holomorphic functions on all punctured formal disks, finitely of which do not extend to the unpunctured disks)
𝕀 β„š=GL 1(𝔸 β„š)\mathbb{I}_{\mathbb{Q}} = GL_1(\mathbb{A}_{\mathbb{Q}}) (group of ideles)𝕀 𝔽 q((t))\mathbb{I}_{\mathbb{F}_q((t))} ( ideles of function field )∏ β€²xβˆˆβ„‚GL 1(β„‚((zβˆ’x)))\underset{x \in \mathbb{C}}{\prod^\prime} GL_1(\mathbb{C}((z-x)))
theta functions
Jacobi theta function
zeta functions
Riemann zeta functionGoss zeta function
branched covering curves
KK a number field (β„šβ†ͺK\mathbb{Q} \hookrightarrow K a possibly ramified finite dimensional field extension)KK a function field of an algebraic curve Ξ£\Sigma over 𝔽 p\mathbb{F}_pK Ξ£K_\Sigma (sheaf of rational functions on complex curve Ξ£\Sigma)
π’ͺ K\mathcal{O}_K (ring of integers)π’ͺ Ξ£\mathcal{O}_{\Sigma} (structure sheaf)
Spec an(π’ͺ K)β†’Spec(β„€)Spec_{an}(\mathcal{O}_K) \to Spec(\mathbb{Z}) (spectrum with archimedean places)Ξ£\Sigma (arithmetic curve)Ξ£β†’β„‚P 1\Sigma \to \mathbb{C}P^1 (complex curve being branched cover of Riemann sphere)
(βˆ’) pβˆ’Ξ¦(βˆ’)p\frac{(-)^p - \Phi(-)}{p} (lift of Frobenius morphism/Lambda-ring structure)βˆ‚βˆ‚z\frac{\partial}{\partial z}β€œ
genus of a number fieldgenus of an algebraic curvegenus of a surface
formal neighbourhoods
vv prime ideal in ring of integers π’ͺ K\mathcal{O}_Kx∈Σx \in \Sigmax∈Σx \in \Sigma
K vK_v (formal completion at vv)β„‚((z x))\mathbb{C}((z_x)) (function algebra on punctured formal disk around xx)
π’ͺ K v\mathcal{O}_{K_v} (ring of integers of formal completion)β„‚[[z x]]\mathbb{C}[ [ z_x ] ] (function algebra on formal disk around xx)
𝔸 K\mathbb{A}_K (ring of adeles)∏ x∈Σ β€²β„‚((z x))\prod^\prime_{x\in \Sigma} \mathbb{C}((z_x)) (restricted product of function rings on all punctured formal disks around all points in Ξ£\Sigma)
π’ͺ\mathcal{O}∏ xβˆˆΞ£β„‚[[z x]]\prod_{x\in \Sigma} \mathbb{C}[ [z_x] ] (function ring on all formal disks around all points in Ξ£\Sigma)
𝕀 K=GL 1(𝔸 K)\mathbb{I}_K = GL_1(\mathbb{A}_K) (group of ideles)∏ x∈Σ β€²GL 1(β„‚((z x)))\prod^\prime_{x\in \Sigma} GL_1(\mathbb{C}((z_x)))
Galois theory
Galois groupβ€œΟ€ 1(Ξ£)\pi_1(\Sigma) fundamental group
Galois representationβ€œflat connection (β€œlocal system”) on Ξ£\Sigma
class field theory
class field theoryβ€œgeometric class field theory
Hilbert reciprocity lawArtin reciprocity lawWeil reciprocity law
GL 1(K)\GL 1(𝔸 K)GL_1(K)\backslash GL_1(\mathbb{A}_K) (idele class group)β€œ
GL 1(K)\GL 1(𝔸 K)/GL 1(π’ͺ)GL_1(K)\backslash GL_1(\mathbb{A}_K)/GL_1(\mathcal{O})β€œBun GL 1(Ξ£)Bun_{GL_1}(\Sigma) (moduli stack of line bundles, by Weil uniformization theorem)
non-abelian class field theory and automorphy
number field Langlands correspondencefunction field Langlands correspondencegeometric Langlands correspondence
GL n(K)\GL n(𝔸 K)//GL n(π’ͺ)GL_n(K) \backslash GL_n(\mathbb{A}_K)//GL_n(\mathcal{O}) (constant sheaves on this stack form unramified automorphic representations)β€œBun GL n(β„‚)(Ξ£)Bun_{GL_n(\mathbb{C})}(\Sigma) (moduli stack of bundles on the curve Ξ£\Sigma, by Weil uniformization theorem)
Tamagawa-Weil for number fieldsTamagawa-Weil for function fields
theta functions
Hecke theta functionfunctional determinant line bundle of Dirac operator/chiral Laplace operator on Ξ£\Sigma
zeta functions
Dedekind zeta functionWeil zeta functionzeta function of a Riemann surface/of the Laplace operator on Ξ£\Sigma
higher dimensional spaces
zeta functionsHasse-Weil zeta function

References

Last revised on July 23, 2014 at 00:05:04. See the history of this page for a list of all contributions to it.